カシオ学園 高校 CASIO GAKUEN high school

先生に質問!まなびのクイックアンケート

$v){ ?>
  • 結果をみる

観覧車の角度による位置。

数学  建築・土木  高校1〜3年  三角関数 / TABLE  sin・cos
fx-993ES / fx-573ES / fx-510AZ / fx-913ES / fx-373ES
問題
5分で1周する、半径50mの観覧車に乗った。
横には高さが90.45mのビルがある。自分がこのビルと同じ高さに来るのは乗ってから約何分後か。
観覧車の中心から両サイド37.15mの場所に通路がある。最初に通路の真上にくるのは約何分後か。
ワンポイントヒント
観覧車の高さhはh=50-50cos(θ)であらわすことができる。
※θは観覧車の回転角度
観覧車の横の位置wはw=50sin(θ)であらわすことができる。
また、15分で1周するのでn分後の回転角度はθ=360n/15とすることができる。
TABLE機能を使えば、変数の変化による式の値の変化を見ることができる。
回答
角度設定は、初期設定(Deg)とする
TABLEモードに移行
観覧車の高さの式を入力 50-50cos(360x」15)
Xの初期値を入力
Xの終了値を入力
15分で1周するので、15を入力
ステップ値を入力
1分毎に見るためには、1を入力
Xの値による変化を表示
カーソルを移動
よって、高さ90.45mに来るのは、6分後と9分後であることがわかる
画面をクリアし、観覧車の横の位置の式を入力(50sin(360x」15)
Xの初期値を入力
Xの終了値を入力 15分で1周するので、15を入力
ステップ値を入力 1分後とに見るためには1を入力
Xの値による変化を表示
よって、最初に通路の真上にくるのは、約2分後であることがわかる

このページの先頭へ